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Abstract

The application of the Mantel-Haenszel test statistic (and other popular DIF-detection methods)

to determine DIF requires large samples, but test administrators often need to detect DIF with

small samples. There is no universally agreed upon statistical approach for performing DIF

analysis with small samples; hence there is substantial scope of further work on the problem. One

advantage of a Bayesian approach over a frequentist approach is that the former can incorporate,

in the form of a prior distribution, existing information on the inference problem at hand; a prior

distribution often leads to improved estimation, especially for small samples. Further, for any

operational test, a huge volume of past data is available, and for any item appearing in a present

test, there is a high chance that a number of similar items have appeared on past operational

administrations of the test. Therefore, ideally, it will be possible to use that past information as

a prior distribution in a Bayesian DIF analysis. This paper discusses how to perform such an

analysis. The suggested Bayesian DIF analysis method is shown to be an improvement over the

existing methods in a realistic simulation study.
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1 Introduction

Differential item functioning (DIF) refers to a difference in test-item functioning between two

comparable groups of examinees, that is, groups that are matched with respect to the construct

measured by the test. Holland (1985) suggested the Mantel-Haenszel (MH) test statistic, arguably

the most popular statistic for the purpose, to detect whether an item shows DIF. The application

of the MH statistic requires large samples. Clauser and Mazor (1998) commented that “samples of

200 to 250 per group have been consistently shown to be suitable for use with the Mantel-Haenszel

statistic” (p. 37). In practice, test administrators often face the dilemma of detecting DIF with

small samples. Further, even for tests with several thousand examinees, there may be only a

few examinees belonging to a group of interest, such as Native Americans. However, there is no

universally agreed upon statistical approach for performing DIF analysis with small samples, and

hence there is substantial scope for further work on the problem.

One advantage of the Bayesian statistical methods over frequentist methods is that the former

can incorporate, in the form of a prior distribution, existing information on the inference problem

at hand, leading to improved estimation, especially for small samples for which the posterior

distribution is sensitive to the choice of prior distribution. Further, for most operational tests, a

huge volume of past data is available, and for any item appearing in a current test, a number of

similar items are often found to have appeared in past operational administrations of the test.

Conceptually, it should be possible to incorporate that past information into a prior distribution

in a Bayesian DIF analysis.

Bayesian methods have been applied to DIF analysis. Zwick, Thayer, and Lewis (1999, 2000)

and Zwick and Thayer (2002) applied empirical Bayes (EB) methods to DIF analysis and found

the EB estimate of DIF to be an improvement over the operationally used MH D-DIF statistic

(Holland & Thayer, 1988), especially for small samples. The EB method estimates the prior

mean and variance from the current data and uses the same prior information for all the items.

However, past information may suggest different prior distributions for different item types that

can be used in a DIF analysis using a full Bayesian (FB) approach. No rigorous works exist on

FB methods for DIF analysis, except a small study by Lewis and Thayer (2000), who did not use

past data to form their prior distributions, but, rather, used noninformative prior distributions

and found the FB method offered no improvement over the EB method.

Motivated by the above, this paper suggests an FB DIF estimation method that uses past
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information in an attempt to improve DIF analysis. The past information is quantified into prior

distributions, one for each item type, which are then used in the FB estimation technique.

One can employ other approaches for small-sample DIF estimation (e.g., exact Mantel-

Haenszel tests suggested by Parshall & Miller, 1995, and Meyer, Huynh, & Seaman, 2004),1 but

those are not discussed in this paper.

Section 2 provides some background—it introduces the ETS operational DIF-detection

method, discusses the EB approach to DIF estimation, and explains the motivation of the current

work. Section 3 discusses the suggested FB approach. Section 4 and 5 provide the study design

and results, respectively. Section 6 provides discussion and conclusions.

2 Background

2.1 The ETS Operational DIF-Detection Method (the Mantel-Haenszel Statistic)

Holland (1985) suggested the MH test statistic for studying DIF in the context of item

response data. Suppose one is interested in examining if a given item j shows DIF for a focal

group, F , (which is of primary interest) and a reference group, R. In an application of the

Mantel-Haenszel test, the examinees are divided into K-matching groups; the groups are typically

formed based on examinees’ total raw scores. For an item, the data from the k-th matched group

of reference and focal group members are arranged as a 2× 2 table, as shown in Table 1. The MH

Table 1.

Mantel-Haenszel Statistic for k-th Matched Groups

Right on an item Wrong on an item Total

Reference Ak Bk nRk

Focal Ck Dk nFk

Total Rk Wk n+k

odds ratio estimate (Mantel & Haenszel, 1959) for an item, which compares the two total groups

in terms of their odds of answering the item correctly conditional on the proficiency measure, is

then given by

α̂MH =

∑
k AkDk/n+k∑
k BkCk/n+k

· (1)
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The MH index of DIF, MH D-DIF (also denoted as ∆MH), suggested by Holland and Thayer

(1988), is given by

MHD − DIF ≡ −2.35 × loge(α̂MH)· (2)

The above transformation places MH D-DIF on the ETS delta scale of item difficulty (Holland &

Thayer, 1985). By definition, MH D-DIF is defined so as to be negative when the item is more

difficult for members of the focal group than it is for the comparable members of the reference

group. Phillips and Holland (1987) estimated the variance of loge(α̂MH) by

1

2 (
∑

k AkDk/n+k)
2

∑

k

(
AkDk + α̂MHBkCk

) (
Ak + Dk + α̂MH(Bk + Ck)

)
/(n+k)

2· (3)

ETS has a system of categorizing the extent of DIF based on both the magnitude of the

MH D-DIF index and the statistical significance of the results (see, e.g., Dorans & Holland, 1993).

According to this scheme, an item has a DIF classification of C, representing moderate to large

DIF, if the absolute value of MH D-DIF is at least 1.5 and is significantly greater than 1 (at a 5%

significance level). An item has a DIF classification of A, representing negligible DIF, if either the

absolute value of MH D-DIF is less than 1 or if the MH D-DIF value is not significantly different

from 0. Items that cannot be classified as A or C are considered to have slight to moderate DIF

and have a DIF classification of B. Items that have been classified as C are subjected to thorough

scrutiny and are usually eliminated from tests. Because it is often important to distinguish

between negative DIF (DIF against the focal group) and positive DIF (DIF favoring the focal

group), the above rules result in five DIF classifications or categories: C-, B-, A, B+, C+, where

the + and - signify positive and negative DIF, respectively.

2.2 Review of the Results Using an Empirical Bayes Approach to DIF

The description of the empirical Bayes approach. Zwick, Thayer, and Lewis (1999) argued

that the operational DIF classification system conveys the notion that an item’s DIF category is

deterministic; they suggested using a Bayesian approach to estimate the probabilities that the true

DIF for an item falls into the A, B, or C categories (called the true DIF method) or to estimate

the probabilities that an item would be classified as A, B, or C in future administrations (called

the future DIF method).
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Zwick et al. (1999) assumed the MH D-DIF statistic, defined in (2) and denoted henceforth

as ∆i (for item i), followed a normal distribution given by

∆i ∼ N (θi, σ
2
i ) (4)

conditional on θi = E(∆i), where θi represents the unknown DIF parameter value corresponding

to ∆i, and σ2
i denotes the sampling variance of the MH statistic. The variance σ2

i is treated as

known and set equal to the observed estimate of the squared standard error S2
i = SE2(∆i). The

prior distribution assumed was

θi ∼ N (µ, τ2), (5)

where µ and τ2 are the overall mean and variance of the θis for the test under consideration.

Equations 4 and 5 imply that the posterior distribution of θi given ∆i, µ, and τ2 is given by

f(θi|∆i, µ, τ2) ∝ f(∆i|θi)f(θi|µ, τ2) ≡ N
(
Wi∆i + (1 − Wi)µ,WiS

2
i

)
, (6)

where

Wi =
τ2

S2
i + τ2

· (7)

The above equation shows that the posterior mean of θi is a shrinkage estimator. As the value of

S2
i becomes large (which means considerable error in estimating θi), Wi approaches 0, and the EB

estimation procedure shrinks the posterior mean considerably toward the prior mean µ. On the

other hand, as S2
i approaches 0 (which means small error in estimating θi), Wi approaches 1, and

the posterior mean approaches the observed value ∆i.

Zwick et al. (1999) then adopted an empirical Bayes (EB) approach (Braun, 1989;

Robbins, 1955) to estimate the model, which involved estimation of µ and τ2 from the available

data. Camilli and Penfield (1997) and Zwick et al. showed that EB estimates are given by

µ̂ =
1

n

n∑

i=1

∆i, τ̂2 = ̂Var(∆i) −
1

n

n∑

i=1

S2
i , (8)

where ̂Var(∆i) = 1

n−1

∑n
i=1

(∆i − µ̂)2, the across-item variance of the MH D-DIF estimates. The

above estimates of µ and τ2 are then plugged in Equation 6 to obtain the (estimated) posterior

distribution of θi.
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Zwick, Thayer, and Lewis (2000) investigated a DIF flagging method based on the loss

function (where keep means failure to flag)

L(keep) = cθ2
i , L(flag) = k· (9)

Suppose the indifference point, that is, the value of θi for which L(keep) = L(flag), is θ∗. This

means that if the true DIF of the item, expressed in the MH metric, is equal to θ∗ in absolute

value, we are indifferent as to whether the item is kept or flagged, which implies cθ2
∗

= k. If the

true DIF is smaller than θ∗, we want to avoid flagging the item, whereas if the true DIF exceeds

θ∗, we would want to flag the item. The decision rule that minimizes the posterior expected loss is

Flag if cE(θ2
i |∆i) ≥ k, i.e., if cE(θ2

i |∆i) ≥ cθ2
∗
. i.e., if E(θ2

i |∆i) ≥ θ2
∗
· (10)

The average loss related with the above rule is

L(keep)P (keep) + L(flag)P (flag). (11)

Zwick et al. used θ∗ = 1 (which leads to c = k) according to the recommendation by Holland

(1987a, 1987b). In terms of the ABC magnitude criteria, this is equivalent to a rule that flags

B and C items. That is, in very large samples where statistical significance is irrelevant, we

would expect the loss function with an indifference point of 1 to show essentially the same results

as a rule that flags both B and C items. Summarization of the results obtained using the EB

method. Zwick et al. (1999) performed a number of simulations and real data analyses, comparing

their EB approach to the operational MH D-DIF approach. For small sample sizes, the results

often differed. For example, for an item in the verbal section of the 1990 Graduate Record

Examination R© (GRE R©), the operational DIF category was C for comparing White (sample

size 8,736) versus Asian-American (sample size 220) students. However, the true DIF method

estimated the chance of the item belonging to the C category to be 4% and the chance of the

item belonging to the A category to be 65%. In the simulation studies, the EB point estimates

(posterior means) had considerably less root mean squared error (RMSE),

1

Nrep

Nrep∑

j=1

(Ej − True DIF)2 ,

where Nrep is the number of replications, and Ej is the estimate in the j-th replication, than the

standard MH D-DIF statistics. For small sample sizes, the superiority of the EB method was
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greatly increased. For example, in a case with 200 reference group members and 50 focal group

members described in Table 7 of Zwick et al. (1999), the median RMSE was 0.65 for the EB

estimate against 0.97 for the MH D-DIF statistic (the EB estimate had less RMSE for 33 items

out of a total of 36 items). The smaller RMSE values for the EB estimates found in Zwick et al.

were consistent with well-established theory. According to the Stein effect (James & Stein, 1961),

estimates can be improved by using information from all coordinates (in this case the MH D-DIF

values for all items) in estimating each coordinate. Such estimates have smaller mean squared

error than their non-Bayesian counterparts. Though EB estimators are not unbiased (whereas

MH estimates are), lower RMSE more than makes up for the bias.

Zwick et al. (1999) further considered repeated administrations of the same test form for

the SAT R© examinations in 1989 and 1991 and GRE examinations in 1991 and 1992. For both

the SAT and GRE examinations, point estimates of DIF parameters computed (both EB and

MH D-DIF) from Time 1 were compared to the Time 2 MH D-DIF statistics. Zwick et al. found

the RMSEs for the EB estimates to be smaller than those for the Time 1 MH D-DIF statistics

(except for one case). The advantage of the EB method (with regard to point estimates) was

more when sample sizes were small (50 for the focal group and 200 for the reference group); for

larger sample sizes, the prior distribution has little influence and the EB estimate is close to the

MH estimate. The advantage was more for the mathematics or quantitative items than for verbal

items.

Zwick et al. (2000) compared their loss-function-based EB method to two possible flagging

approaches based on the MH D-DIF statistic: (a) B rule (which flags both B and C items; this

should be comparable to the EB rule) and (b) C rule (which flags only C items). In simulations

under reasonable assumptions about the relative seriousness of Type I and Type II errors, the

authors found the loss-function-based DIF-detection rule to perform better overall than the B

rule and the C rule, especially for small samples. However, compared to the B rule and the C

rule, the loss-function-based DIF-detection rule was more likely to correctly identify items with

DIF and had a comparatively higher Type I error rate (p. 244)—that is, the loss-function-based

DIF-detection rule was more likely to incorrectly flag items that did not have DIF (p. 238).

Zwick and Thayer (2002) performed a simulation study to investigate the applicability of the

method developed by Zwick et al. (1999, 2000)to computer-adaptive test (CAT) data. Results

showed the performance of the EB DIF approach to be quite promising, even in extremely small
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samples. In particular, the EB procedure was found to achieve roughly the same degree of stability

for samples averaging 117 and 40 members in the two examinee groups as did the ordinary MH

statistic for samples averaging 240 in each of the two groups (the median RMSE achieved for EB

with samples averaging 117 and 40 members was the same as the median RMSE achieved for MH

for sample sizes averaging 240). Overall, the EB estimates tended to be closer to their target

values than did the ordinary MH statistics in terms of RMSE; the EB estimates were also more

highly correlated with the target values than were the MH estimates.

Lewis and Thayer (2000) applied the EB method and an FB method (with noninformative

prior (i.e., not using any past data) to data from an adaptive licensure test. Using two sets of

items that appeared both in a pretest (small sample size) and an operational test (large sample

size), they used pretest information to predict operational performance of the different methods in

two ways: (a) they computed pretest-based point estimates to predict operational values of the

MH D-DIF statistics, and (b) they computed pretest-based classifications to predict operational

classifications. The research found both the EB and FB estimates to perform better than the

MH D-DIF statistic in terms of RMSE. The researchers also found the EB method to perform

slightly better than the FB estimate. However, the results were opposite for classification;

the MH D-DIF method performed better than both the Bayesian methods with respect to

classification. Lewis and Thayer argued that using the two Bayesian estimates provided a better

combination of prediction and classification than would using pretest MH D-DIF statistics alone.

The researchers also recommended that, to produce a test that is as fair as possible for all test

takers, all sample-size restrictions currently in place be dropped for the licensure test they dealt

with, which had a surplus of items available.

2.3 Existing Literature on the Use of Past Information in Bayesian Methods

An advantage of the Bayesian methods over the frequentist methods is that the former

can incorporate prior information about the problem into the statistical model in the form of a

prior distribution. For an inference problem with small sample size, where the prior distribution

affects the posterior distribution substantially, the advantage can be practically significant. In

educational testing, this may have major implications. Often, as in the problem of small-sample

DIF detection (which is the focus of this paper), the size of the current sample is small, but

there are usually a large amount of past data easily available (most of the tests administered over
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the years do not change too much over time). Therefore, ideally, if prior distributions can be

formed using past data, there is a scope of improvement in the quality of statistical estimation

for applications with small sample sizes. To form a prior distribution, one has to find a way to

quantify the information from the past data in an optimum way into a prior distribution.

Gelman, Carlin, Stern, and Rubin (2003, p. 260) had an example where past data were used

to elicit a prior distribution for a statistical model applied to pharmacokinetics. In an application

of Bayesian statistics in medical screening, Johnson and Gastwirth (1991, p. 435) elicited a prior

distribution from past data; specifically, they treated the posterior distribution of a parameter

from the analysis of Canadian people as the prior distribution for analysis of British people.

In psychometrics, Novick and Jackson (1974, chapters 6-9 and 7-12) had a number of examples

where prior distributions were constructed using past data, in the context of a beta-binomial

model (where the response variable has a binomial distribution whose success probability follows

a beta prior distribution) and normal model.

To apply the three-parameter logistic (3PL) model to 1987 American College of Testing

(ACT) mathematics test data, Tsutakawa (1992) formulated a prior distribution for the model

parameters from 1981 ACT mathematics test data.

Recently, Swaminathan, Hambleton, Sireci, Xing, and Rizavi (2003) found in a simulation

study that estimation of item response theory (IRT) model parameters can be improved

considerably by incorporating judgmental data on item difficulty into the prior distribution for

the difficulty parameter. Other than these few studies, there is a lack of work on constructing

prior distributions from past data in psychometrics, even though Bayesian statistics has become

extremely popular in the field (see, e.g., Sinharay, 2005) and the sample size in such applications

is often not large.

2.4 Previous Research on Item Characteristics Affecting DIF

Schmitt and colleagues, through a number of well-planned studies, revealed a number of

factors that contribute to DIF. Schmitt (1985, 1988) found, among other things, that true cognates

tended to have positive DIF for Hispanic examinees taking the SAT examination. Schmitt and

Bleistein (1987) reported that Black students did not complete SAT-V sections at the same rate

as White students with comparable SAT-V scores and that this differential speededness effect

appeared to account for much of the negative DIF for Blacks on SAT verbal analogy items.
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Dorans, Schmitt, and Curley (1988) found a similar phenomenon (also see Schmitt, Dorans, &

Holland, 1993) in a special confirmatory experiment. Schmitt and Dorans (1990) analyzed SAT

data to report findings such as (a) an item whose content is of special interest shows positive

DIF for the relevant ethnic group, and (b) homographs tend to show negative DIF for Asian

American, Hispanic, and Black students. Schmitt, Curley, Bleistein, and Dorans (1988) reported

the results from a randomized DIF study where specially constructed items, developed to test

specific hypotheses, were administered under conditions that permitted appropriate statistical

analyses to assess the efficacy of the hypotheses. The most convincing support was found for the

hypothesis that the true cognates show positive DIF for Hispanic examinees.

The research of Lawrence and Curley (1989) and Lawrence, Curley, and McHale (1988) on

SAT reading passages showed that content related to technical aspects of science (as opposed to

the history or philosophy of science) appeared to be more difficult for women than for a matched

group of men.

Gallagher et al. (2000) proposed a taxonomy of content and cognitive characteristics to

account for gender differences in mathematics. However, Gierl, Bisanz, Bisanz, and Boughton

(2003) found little support for the taxonomy in a carefully designed study of factors leading to DIF

in a curriculum-based mathematics achievement test for Canadian ninth-graders; they commented

(p. 299) that the taxonomy may not be entirely adequate. The only characteristic mentioned

in Gallagher et al. that was supported by the results in Gierl et al. is that items that require

significant spatial processing show negative DIF for women. O’Neill and McPeek (1993) and

Camilli and Shepard (1994) also reported several factors causing DIF in a variety of situations.

3 A Full Bayesian Approach Using Past Information

Lord (1986) argued, in the context of IRT parameter estimation, the following:

When approximately parallel test forms are administered year after year to similar

population of examinees, it becomes possible to deduce appropriate prior distributions

for the item and the ability parameters from past results. In such a situation, Bayesian

procedures should certainly yield better parameter estimates than maximum likelihood,

since Bayesian procedures make use of more information. (p. 158)
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The argument applies for DIF estimation as well, as is clear from the following comment of Zwick

et al. (1999), ”It is anticipated that in operational applications of the EB methods to test data,

the results of previous DIF analyses of the same test could also be used to inform the selection of

appropriate values for µ and τ2” (p. 7).

Our work basically implements the above idea. We not only restrict ourselves to one µ and τ2

as mentioned by Zwick et al. (1999), but we also allow µ and τ2 to vary over the different types of

items. The above discussions on the use of past information in Bayesian methods and previous

research on item characteristics affecting DIF motivated our work.

The EB method of Zwick et al. (1999), while itself an improvement over the current

operational MH D-DIF method, uses the same prior information for all the items while past

information may suggest different prior distributions for different item types that can be used in a

DIF analysis using a full Bayesian (FB) approach.

In our analysis, similar to Zwick et al. (1999), the basic statistical model is

∆iT ∼ N (θiT , σ2
iT ), (12)

where ∆iT denotes the MH D-DIF statistic for item i that is of a specific item type T . For

example, T could denote items with content related to science. As in Zwick et al., the σ2
iT s are

assumed known and set equal to S2
iT = SE2(∆iT ), the observed estimate of the squared standard

error. We assume the prior distribution to be

θiT ∼ N (µT , τ2
T ), (13)

that is, unlike in Zwick et al. (1999), the true DIF parameter of an item is assumed to follow

a normal distribution with mean and variance specific to the type of that item. The mean and

variance of the MH D-DIF estimates of past items of type T are used as estimates of µT s and τ2
T s,

respectively, and are denoted as µ̂T and τ̂2
T . Then, the posterior distribution of θiT is given by

f(θiT |∆iT ) ≡ N
(
W̃iT ∆iT + (1 − W̃iT )µ̂T , W̃iT S2

iT

)
, (14)

where

W̃iT =
τ̂2
T

S2
iT + τ̂2

T

. (15)

This approach has the potential to provide more accurate results in DIF analysis with small

sample sizes than an empirical Bayes method or a frequentist method. Earlier discussions in
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this paper showed several experts believed that some items are more likely to show DIF than

others and that information quantified in the prior distribution should provide an advantage to

the FB method. From the description of the approach, it is clear that the FB approach requires

more information than the traditional MH approach or the EB approach. For assessments with

well-maintained records, however, obtaining the extra information should not be costly. It is also

clear that computation using the approach requires little extra time compared to the MH or the

EB approach.

4 Study Design

To compare the performance of the FB estimates to the MH and EB estimates, we performed

a realistic simulation study that used operational test data. We used data from 12 administrations

(between 2001 and 2004) of the Pre-Professional Skills Test (PPST R©) on reading. These test

forms were administered to between 7,000 and 19,000 examinees. The prior distributions were

constructed from the 10 least recent administrations (considered as past data). Then, to study the

performance of the DIF estimation methods, we iterated the following two steps on data from

each of the two remaining, most recent administrations (which were treated as current data) 1,000

times:

1. Choose a random subsample from the data. Two different sample sizes were used. To study

the results for a small-sample size condition, we set the size of the smaller group (male

examinees for male-female DIF and Black examinees for White-Black DIF) as 50. As in the

operational analysis, the focal group for male-female DIF analysis is the female group and

the focal group for White-Black DIF analysis is the Black group throughout this paper (note

that in the male-female DIF, the smaller group of male examinees is the reference group). To

study the results for a larger sample-size condition, we set the size of the smaller group as

300. The size of the other group was chosen to maintain the same ratio of focal group size

and reference group size as in the full sample. For example, the number of males and females

in Data Set 1 for the PPST reading test were 2,736 and 10,203, respectively. To maintain

the ratio of male-to-female at 2736:10203 and to keep the smaller group size (that of male

examinees) at 50 and 300 for the focal and the reference groups, respectively, we needed 186

and 1,120 female examinees in the subsamples.
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2. Compute the MH D-DIF statistic, EB DIF estimate, and FB DIF estimate for each item from

the small subsample. Also obtain the DIF classification provided by each method for each

item from the small subsample. For the MH statistic, we considered two flagging approaches

as in Zwick et al. (2000): a B rule (that flags both B and C items) and a C rule (that flags

only C items). While the B rule is comparable to the EB and FB method directly, the C

rule is mostly used operationally. For the EB or FB method, obtaining the DIF classification

required use of the decision rule given in Equation 10.

The above provides, for each item, 1,000 point estimates and 1,000 DIF classifications using

each approach. We then compared the point estimates to the true DIF, which is the value of

MH D-DIF from the full sample, using RMSE and squared bias measures, where, for an item and

an estimation method,

Bias =
1

1000

1000∑

j=1

Estimated DIF from subsample j − True DIF,

RMSE =

√√√√√ 1

1000

1000∑

j=1

(Estimated DIF from subsample j − True DIF)2 ·

We also determined the true DIF classifications for the items. As in Zwick et al. (2000, p. 238),

because the indifference point is 1, true DIF classification of items with true DIF values less

than one in absolute value is keep and the true DIF classification of any other item is flag. We

compared the DIF classifications from the subsamples to the true DIF classifications to obtain

average percent correct decisions for keep items, flag items, and overall for each of the methods.

Also, the average loss for keep items, flag items, and overall are obtained using the average loss

function given by Equation 11. Here, as the true DIF values θi are assumed known, L(keep) = cθ2
i

can be easily computed; L(flag) = k is set to 1 to fix the scale, and P (keep) and P (flag) are

estimated from the simulation results.

The nature of the simulation study used in this paper is rare and hence needs special mention.

The simulations use subsamples of operational data instead of data generated from an IRT model,

which, as noted in Wainer and Thissen (1987), often have an uncertain relationship to reality.

Thus, these simulations provide realistic results.
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5 Results for PPST Reading Assessment

5.1 Analysis of Past Data

For the PPST reading assessment (PPSTR), test developers classify each item into one of

two D1 classifications according to the item type. Each item is also classified into one of two

D2 classifications based on the item’s content. The D1 and D2 classifications for the PPST

assessments are designations for various types and levels of item classification. These, along with

a number of other classifications, are used by the test developers to help in assembling test forms

that conform to specifications and constraints. For example, in PPSTR, the two D1 classifications

are literary comprehension and critical and inferential comprehension. For security purposes, no

further details of these classifications are included.

Figures 1 and 2, respectively, show box plots for the distributions of the male-female and

White-Black MH D-DIF statistics for the different D1 and D2 classifications for 400 items from 10

past forms of the PPSTR assessment.
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Figure 1. Box plots for the MH D-DIF statistics for PPSTR for male-female DIF.

Note. The dotted line corresponds to an MH D-DIF value of 0.

The figures show that although the average of the MH D-DIF statistics is close to 0 for any

item type, there is some variation among the classifications with respect to the corresponding

distributions of MH D-DIF statistics. For example, items with the second D2 classification more

often have negative MH D-DIF statistics for White-Black DIF analysis.
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Figure 2. Box plots for the MH D-DIF statistics for PPSTR for White-Black DIF.

Note. The dotted line corresponds to an MH D-DIF value of 0.

For male-female DIF, none of the 400 past items have C DIF and only 10 have B DIF. For

White-Black DIF, none of the 400 past items have C DIF and only 28 have B DIF. An analysis of

variance (ANOVA) of the past 400 MH D-DIF values shows that for the male-female DIF analysis,

the main effects of D1 and D2 classifications are significant at the 5% level and a backward

stepwise algorithm chooses a model with the main effects of D1 and D2 classifications. For the

White-Black DIF analysis, only the main effect of the D2 classification is significant at the 5%

level, and a backward stepwise algorithm chooses a model with the main effect of D2 classification

only.

Table 2 shows the mean and standard deviation (SD) of the MH D-DIF values for the 400

past items for different item types. These values will act as the prior means and SDs (µ̂T and√
τ̂2
T ) for the FB analysis.

5.2 Results From DIF Analysis

Both of the two most recent PPSTR administrations have items with all four combinations

of D1 and D2 classifications. Table 3 summarizes the performance of the different statistics for

male-female and White-Black DIF for the two most recent PPSTR data sets.

Four versions of the FB estimate were considered:
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Table 2.
Mean and SD of the MH D-DIF Statistics for Different Item Types

for the Past 10 Administrations of the PPSTR Assessment

D1 D2 Number Male-female DIF White-Black DIF
classification classification of items Mean SD Mean SD

1 1 177 0.07 0.45 0.10 0.55
1 2 54 -0.07 0.44 -0.22 0.49
2 1 123 0.00 0.47 0.13 0.49
2 2 46 -0.23 0.47 -0.28 0.57

1. FB (D1 & D2) denotes a FB estimate using four item types (i.e., four µ̂T s and four τ̂2
T s), one

for each combination of D1 and D2 classification.

2. FB (D1) denotes a FB estimate using item types based on D1 classification only.

3. FB (D2) denotes a FB estimate using item types based on D2 classification only.

4. The fourth version, FB (1), denotes an FB estimate using one item type that contains all

items; this estimate is very much what the quote in Section 3. from Zwick et al. (1999, p. 7)

referred to. For this version, µ̂T and τ̂2
T are the mean and variance of the MH D-DIF statistics

of the 400 past items.

The results for the first three above were virtually indistinguishable—so this paper reports

results for only one of these, depending on an ANOVA of the MH D-DIF values; for example, if an

ANOVA suggests that effects of both D1 and D2 classifications are significant, results for FB (D1

& D2) are reported. The leftmost column in Table 3 shows the data set (i.e., the administration

[1 or 2] the data are from, focal group size, reference group size, the number of C DIF items, and

the number of B DIF items). There are few items with B or C DIF categories in the two current

data sets. The remaining columns in the table show, for each condition and each method, the (a)

root average squared bias computed over all items, (b) average RMSE computed over all items,

(c)-(e) average percent correct DIF categorization (with respect to keep/flag) for keep items, flag

items, and overall, and (f)-(g) average loss for keep items, flag items, and overall. Section 4.

describes how these measures are computed. Results for the B rule, C rule, and EB method are

also reported, rather than those for the two versions of the FB method. Note that given the choice

of 1 as the indifference point in the loss function, as in Zwick et al. (2000), the results for the EB
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Table 3.
The Outcome for Male-Female and White-Black DIF for PPSTR

Simul. Method Root Av. Av. % Av. % Av.% Av. Av Av.
cond. av. sq. RMSE corr. corr. corr. loss loss loss

bias keep flag all keep flag all

MF C rule 0.21 1.28 98.43 8.43 91.68 0.18 1.58 0.29
Data 1 B rule 0.21 1.28 88.19 29.70 83.80 0.26 1.39 0.35

186 EB 0.41 0.49 91.67 16.40 86.03 0.24 1.53 0.33
50 FB (D1 & D2) 0.45 0.39 100.0 0.00 92.50 0.17 1.66 0.28
1, 2 FB (1) 0.40 0.40 100.0 0.00 92.50 0.17 1.66 0.28

MF C rule 0.02 0.44 99.75 18.50 93.65 0.17 1.42 0.27
Data 1 B rule 0.02 0.44 90.29 70.57 88.81 0.23 1.08 0.29
1120 EB 0.24 0.32 99.00 25.33 93.48 0.18 1.36 0.27
300 FB (D1 & D2) 0.26 0.31 99.79 16.10 93.52 0.17 1.43 0.27
1,2 FB (1) 0.27 0.31 99.91 15.13 93.55 0.17 1.44 0.27

MF C rule 0.09 1.29 98.46 - 98.46 0.19 - 0.19
Data 2 B rule 0.09 1.29 89.07 - 89.07 0.26 - 0.26

177 EB 0.35 0.42 94.92 - 94.92 0.22 - 0.22
50 FB (D1 & D2) 0.36 0.35 100.00 - 100.00 0.18 - 0.18
0, 0 FB (1) 0.37 0.35 100.00 - 100.00 0.18 - 0.18

WB C rule 0.08 1.08 98.56 6.92 84.81 0.22 1.40 0.40
Data 1 B rule 0.08 1.08 87.48 30.28 78.90 0.30 1.29 0.45

50 EB 0.45 0.54 92.36 17.40 81.12 0.27 1.35 0.43
263 FB (D2) 0.47 0.45 99.99 0.22 85.02 0.21 1.43 0.40
0,6 FB (1) 0.51 0.48 99.99 0.00 84.99 0.21 1.43 0.40

WB C rule 0.03 0.36 99.66 11.65 86.46 0.22 1.37 0.39
Data 1 B rule 0.03 0.36 91.60 71.60 88.60 0.25 1.11 0.38

300 EB 0.21 0.32 97.84 35.65 88.51 0.22 1.26 0.38
1583 FB (D2) 0.24 0.31 99.17 27.23 88.38 0.22 1.30 0.38
0,6 FB (1) 0.24 0.32 99.22 24.02 87.94 0.22 1.31 0.38

WB C rule 0.07 1.08 98.79 6.72 87.28 0.19 1.60 0.37
Data 2 B rule 0.07 1.08 88.29 28.30 80.79 0.27 1.47 0.42

50 EB 0.46 0.50 94.45 13.06 84.27 0.22 1.56 0.39
258 FB (D2) 0.48 0.44 99.98 0.18 87.51 0.18 1.65 0.36
1, 4 FB (1) 0.49 0.45 100.00 0.02 87.50 0.18 1.65 0.36

Note. The Simul. cond. column gives the type of DIF analysis done (i.e., MF for male-female or
WB for White-Black), data set (1 or 2), number of examinees in the focal and reference groups,
number of true C DIF items, and number of true B DIF items according to the ETS DIF rule.
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and FB method will be compared to those from the B rule (and not to those from the C rule) in

the remainder of this paper. Thus MH estimate refers to the B rule henceforth. However, results

for the C rule, the operational method, are also reported.

Table 3 shows that the FB method performs the best for all the cases with respect to RMSE,

proportion correct decisions, and average loss. The results for the FB(1) version are very close

to those for FB (D1 and D2), FB(D1), or FB(D2), which shows that whether the FB analysis

considers one type of items or more does not affect the results. The FB analysis results in

substantial gains over the other methods for small sample sizes. For example, for Data Set 1, the

RMSE for the FB method is 0.39, while the lowest among the others is 0.49. For the same data

set, the average overall loss for the FB method is 0.28, while the lowest among the B rule and the

EB method is 0.33. Like the EB method, the FB method provides biased estimates as well, but it

is more than compensated by its improved RMSE.

The appendix shows results of the same type of analyses as above on PPST mathematics

and PPST writing. These results are very similar to those for the PPSTR (i.e., the FB estimate

performs slightly better than the EB estimate, which performs better than the MH D-DIF

estimate). However, the gain for the FB method over the EB method is not substantial for a

number of cases.

We also performed one more set of simulations for PPSTR data; these simulations are mostly

similar to the above mentioned ones, but they differ in that we now divided the data set for each

of the two most recent test forms into two, depending on the time an examinee took the test (it

so happens that each of these test forms were given on two different dates). We drew a random

small subsample from the data with all the examinees who took the test at the earlier test date,

computed DIF estimates and classifications, and compared them to the corresponding values

computed from the full data set with all the examinees who took the test at the later test date.

Table 4 provides bias, RMSE, percent correct decision, average loss, and so on, for the estimates.

The results from Table 4 are often similar to the earlier results (e.g., the EB and FB methods

have less RMSE than the MH method). The major difference is that the MH statistic has

comparatively more bias than the earlier DIF analyses; as a result, the bias of the EB and FB

estimates are is much worse than that for MH estimates. Besides, the EB and FB methods appear

virtually indistinguishable with respect to the values of the measures.

We investigated further the results reported in Table 3 to understanding better the nature of
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Table 4.
The Outcome for Male-Female and White-Black DIF When DIF Estimates From an

Earlier Time-Point Are Used to Predict DIF at a Later Time-Point for PPSTR

Simul. Method Root Av. Av. % Av. % Av.% Av. Av Av.
cond. av. sq. RMSE corr. corr. corr. loss loss loss

bias keep flag all keep flag all

MF C rule 0.46 1.32 98.28 5.98 89.05 0.18 1.50 0.31
Data 1 B rule 0.46 1.32 87.96 23.50 81.51 0.27 1.37 0.38

189 EB 0.50 0.43 99.75 0.00 89.77 0.17 1.56 0.31
50 FB (D1 & D2) 0.49 0.43 100.00 0.00 90.00 0.17 1.56 0.31
1,3 FB (1) 0.50 0.43 100.00 0.00 90.00 0.17 1.56 0.31

MF C rule 0.40 1.32 98.61 - 98.61 0.21 - 0.21
Data 2 B rule 0.40 1.32 89.04 - 89.04 0.29 - 0.29

180 EB 0.41 0.38 99.84 - 99.84 0.21 - 0.21
50 FB (D2) 0.40 0.37 100.00 - 100.00 0.20 - 0.20
0,0 FB (1) 0.41 0.38 100.00 - 100.00 0.20 - 0.20

WB C rule 0.38 1.10 98.02 6.63 91.17 0.24 1.38 0.33
Data 1 B rule 0.38 1.10 85.18 28.13 80.90 0.33 1.30 0.40

50 EB 0.46 0.45 99.82 0.07 92.34 0.23 1.41 0.32
266 FB (D2) 0.43 0.42 99.94 0.03 92.45 0.23 1.41 0.32
0,3 FB (1) 0.46 0.45 99.99 0.07 92.50 0.23 1.41 0.32

WB C rule 0.34 1.20 98.82 4.68 87.06 0.17 1.54 0.34
Data 2 B rule 0.34 1.20 89.45 22.14 81.03 0.24 1.45 0.39

50 EB 0.50 0.46 99.86 0.00 87.38 0.16 1.57 0.33
233 FB (D2) 0.49 0.44 99.98 0.06 87.49 0.16 1.57 0.33
1,4 FB (1) 0.50 0.45 100.00 0.00 87.50 0.16 1.57 0.33

Note. The Simul. cond. column gives the type of DIF analysis done (i.e., MF for male-female or
WB for White-Black), data set (1 or 2), number of examinees in the focal and reference groups,
number of true C DIF items, and number of true B DIF items according to the ETS DIF rule.

the FB approach. Figure 3 shows, for male-female DIF analysis with a focal group size of 50 and

a reference group size of 186 in PPSTR Data Set 1, plots of the true values of the MH statistic

(which are the values of the MH statistics from the full data set) versus the bias (top panel) and

the RMSE (bottom panel) for the MH estimate, EB estimate, and FB estimate.

Figure 3 also shows that the EB and FB estimates are more biased than the MH estimates in

general. This is because of shrinkage to the mean (see, e.g., Section 2.2). The figure also shows

that, overall, the EB estimates have much less RMSE than the MH estimates. However, the FB
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Figure 3. Bias and MSE for the three estimates for PPSTR for male-female DIF.

estimates have even less RMSE than the EB estimates for all but two or three items.

For PPSTR Data Set 1, Figure 4 compares the percentage of times an item got flagged (top

panel) and the average loss functions (bottom panel) given by Equation 11 for the three estimates

for male-female DIF.

The top plot in Figure 4 shows that the FB method never flags an item for this case; that

makes the FB method the best method for the items that are actual keep items, but that also

means that the FB method will lead to an error for the actually flag items. The consequences are

observed in the bottom plot of Figure 4, which shows that the average loss for the FB estimate

is lower than that for the MH and EB estimates in the middle, while the average loss for the FB

estimate is higher than that for the other two estimates for high or low values of the true DIF

parameter. The opposite is true for the MH estimate. The average loss of the EB estimate lies in

between the other two.

The EB estimate is slightly more conservative than the MH estimate regarding DIF

classification as also observed in Zwick et al. (2000). However, the FB estimate seems to be more
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Figure 4. Average loss for the three estimates for PPSTR for male-female DIF.

conservative than the MH and EB estimates (it rarely flags an item, as can be seen from the top

panel of Figure 4). To examine the classification issue further, Figure 5 compares, for PPSTR

Data Set 1 and two items,2 plots of the difference of the male-female MH/EB/FB estimates and

the true MH D-DIF value for a focal group size of 50 and a reference group size of 186.

Figure 6 compares the weights assigned to the MH D-DIF estimate by the EB estimate and

the FB estimate for the two items in the 1,000 replications; the expression for the weight for the

EB estimate is given by Equation 7, while that for the FB estimate is given by Equation 15. The

figure shows that for both items, the weights for the FB estimate are all just below 0.2, while

those for the EB estimate are between 0 to 0.7. The reason is that the EB estimates of τ2 (with a

median of 0.34) are mostly larger than the FB estimates of τ2
T (around 0.18 for both items) for

the items.

For small sample sizes, the S2
i (or S2

iT )s are large—with 2.5th percentile, median, and

97.5th percentile of the distribution of S2
i (or S2

iT ) in the 1,000 subsamples for the two items

as {0.79, 1.00, 1.41} and {0.67, 0.83, 1.13}, respectively, which leads to values of weight being
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Figure 5. Plot of estimates minus true DIF for different methods for two items (each
row showing plots for an item) for PPSTR for male-female DIF.
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Figure 6. Plot of EB weights versus the FB weights for two items for PPSTR for
male-female DIF.
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considerably less than 1 for EB, and even lesser for FB. Hence Figure 6, together with Equations 6

and 14 (which imply that the amount of shrinkage to the mean increases as weight decreases),

suggests that the EB estimates are shrunk to the prior mean (which is close to 0) to a certain

extent, but the FB estimates are shrunk even more. For the second item (with true DIF category

A and true DIF value of 0.11, which is close to 0), the shrinkage leads to lower RMSE for the

FB estimate than for the EB and MH estimates. For the first item, which has true DIF category

C, however, the true DIF (-1.61) is far from 0, and hence the shrinkage causes the Bayesian

estimates (both EB and FB) to be consistently far from the true value and to have higher

RMSE than the MH estimate. The correlation coefficients between the MH and EB estimates

are 0.64 and 0.80 for the two items; those between the MH and FB estimates are 0.97 and 0.99

(because, from Equation 14 and Figure 6, it is clear that the FB estimate is always close to

0.2 ∗ MH estimate + 0.8 ∗ µ̂T , resulting in a high correlation between these two estimates) and

those between the EB and FB estimates are 0.63 and 0.80.

One more interesting feature of the results shown in Table 3 is that the performance of the C

rule with respect to percent correct classifications and average loss is often very close to that of the

EB estimate and more so to that of the FB estimate (the average RMSE of the C rule, however,

is always much larger than that for the EB and FB estimates). Section 2.2 discussed that the EB

and FB estimates are comparable directly to the B rule because of the choice of an indifference

point of 1. Because of its conservative nature, however, the FB estimate (and, to a certain extent,

the EB estimate) behaves more like a C rule than a B rule with respect to DIF classification.

We also performed the above analyses with the indifference point of 1.5; in this case, the EB

and FB estimates become comparable to the C rule, rather than to the B rule. Note that the

values for the RMSE does not change if the indifference point is changed, so the FB estimate is

slightly better than the EB estimate, which is slightly better than the C rule with respect to

the average loss. The values regarding the classification and average loss are different from those

obtained with indifference point of 1, but still the EB and FB estimates perform slightly better

than the C rule, and the EB estimate performs almost as well as the FB estimate with respect to

those values.
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6 Discussion and Conclusions

This paper suggests an FB approach to DIF analysis using data from past operational forms

of the test concerned to form a prior distribution. Thus, this paper is the first to make an attempt

to use information from past DIF analyses to improve on current DIF analysis. The suggested

approach performs better than the existing ones for small samples, but the gain is not too

substantial overall. In particular, the detailed information on different item types was not found

to be very useful. For almost all cases, an FB analysis with only one item type performs as well as

a FB analysis with more item types. This is because (a) the variation in the DIF estimates in the

past data is too low (there are very few B or C DIF items in the past), causing too much shrinkage

toward the overall mean of the small-sample estimates, resulting in very few flag decisions, and,

(b) the most recent data sets have few items with substantial DIF (so that any approach that

never flags an item will not perform too poorly). One might wonder if the superior performance

of the FB estimate compared to the other estimates can be attributed to shrinkage to the mean

only. In other words, will an estimate that results in more shrinkage to the mean always perform

better? The answer is no. For example, if one considers extreme shrinkage in the form of a DIF

rule that always estimates the DIF parameters of all items by 0, its RMSE for male-female DIF

for Data Set 1 for a focal group size of 50 is 0.53; the EB estimate (with RMSE of 0.49) beats this

trivial rule barely, while the FB estimate (with RMSE of 0.39) beats the rule by a considerable

margin; the average loss for the rule is the same as that for the FB estimate.

Figure 3 shows that the EB and FB estimates have higher RMSE than the MH estimate

for the one extreme true MH value. The poor performance of Bayesian estimates compared to

frequentist estimates for extreme observations have been noted in, for example, Carlin and Louis

(1996, p. 88). The fact that the most recent data sets analyzed in these studies have very few

items with extreme DIF may have mostly contributed to the EB and FB approaches appearing

better overall than the MH approach (though one could argue that because few of the past items

have B or C DIF, it is expected that the recent data will have the same feature). In the future, we

would like to examine the performance of the FB estimate for an assessment at the other end of

the spectrum; that is, for which the proportion of items with B or C DIF is much more than what

is observed here.

From a practical perspective, the results of this study provide some support for the current

practice of performing no DIF analysis under small sample sizes for tests that have a prior history
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of finding only a few items flagged for DIF. Performing no DIF analyses at all is consistent with

using a very strong prior in which all items are presumed to be A DIF items. When the prior

history reveals a preponderance of A DIF items, this presumption of all A DIF items is a sound

wager from a statistical perspective. It remains to be seen how effective the full Bayesian method

is with tests where DIF is more prevalent.

This work leaves a number of issues for further research. Though this paper considered the

Mantel-Haenszel statistic only, the method suggested can also be applied to other DIF-detection

methods (e.g., SIBTEST, standardization, or logistic regression). One could perform a more

thorough Bayesian analysis using hyper-prior distributions on µT and τ2
T or allowing σ2

iT s to be

random parameters—the computational burden will increase for these analyses, though. It is also

possible to include the past information in some other way than the one used in this paper, such

as using a power prior distribution (Ibrahim & Chen, 2000); a power prior distribution is based on

constructing the likelihood function from the past data and raising it to a scalar power between

0 and 1 to account for the difference between the current and past data. One could also explore

indifference points other than 1 with the loss function of Zwick et al. (2000) and explore other

types of loss functions.
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Notes

1 Zwick et al., 2000, p. 229, commented that Parshall and Miller (1995) found the performance of

the usual MH procedure to be similar to that of an exact MH test under various conditions,

including focal group samples as small as 25.

2 The two items both have D1 classification of 2 and D2 classification of 1. One item (the leftmost

item in Figure 3) has a true MH D-DIF value of -1.61, and the other item has a true MH

D-DIF value of 0.11.
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Appendix

This appendix describes the results from same type of analyses as above for PPST

mathematics (PPSTM) and PPST writing (PPSTW) tests.

Analyses of PPSTM Data

Analysis of Past Data

For the PPST mathematics (PPSTM) assessment, test developers classify each item into one

of five D1 classifications with respect to content area. Each item is also classified into one of two

D2 classifications.

Figures A1 and A2, respectively, show the distribution of the male-female and White-Black

MH D-DIF statistics for 400 past items from 10 past data forms of the PPSTM assessment

according to the different classifications. For male-female DIF, 5 of the past 400 items have C DIF

and 25 have B DIF. For White-Black DIF, 3 of the past 400 items have C DIF and 32 have B DIF.

An ANOVA of the MH D-DIF values shows that for the male-female DIF analysis, the main

effects for the two classifications and their interaction effect are significant at the 5% level, while

for the White-Black DIF analysis, only the main effect for the D1 classification is significant at

the 5% level.

For male-female DIF, a backward stepwise algorithm results in a model with the main effects

for the two classifications and their interaction effect; for White-Black DIF, a backward stepwise

algorithm results in a model with main effect of the D1 classification only.

Results From DIF Analysis

Both recent administrations have items with all combinations of D1 and D2 classifications.

Table A1 summarizes the performance of the different statistics for male-female and White-Black

DIF. As with reading, there are only a few items with B or C DIF.

Table A2 shows the results of the same type of analyses performed for Table A1.
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Figure A1. Distribution of the MH D-DIF statistics for PPSTM for male-female

DIF.

Note. The dotted line corresponds to an MH D-DIF value of 0.
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Figure A2. Box plots for the MH D-DIF statistics for PPSTM for White-Black DIF.

Note. The dotted line corresponds to an MH D-DIF value of 0.
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Table A1
The Outcome for Male-Female and White-Black DIF for PPSTR

Simul. Method Root Av. Av. % Av. % Av.% Av. Av Av.
cond. av. sq. RMSE corr. corr. corr. loss loss loss

bias keep flag all keep flag all

MF C rule 0.07 1.16 98.34 8.37 91.59 0.23 1.68 0.34
Data 1 B rule 0.07 1.16 86.94 34.00 82.97 0.31 1.39 0.39

186 EB 0.43 0.50 92.42 16.50 86.73 0.27 1.62 0.37
50 FB (D1 & D2) 0.48 0.45 99.90 0.00 92.41 0.22 1.81 0.34
1, 2 FB (1) 0.45 0.44 99.99 0.47 92.53 0.22 1.80 0.34

MF C rule 0.02 0.40 99.64 27.20 94.20 0.22 1.34 0.30
Data 1 B rule 0.02 0.40 89.29 72.23 88.01 0.27 1.06 0.33
1119 EB 0.19 0.32 97.67 39.80 93.33 0.23 1.23 0.30
300 FB (D1 & D2) 0.25 0.32 98.83 18.10 92.77 0.22 1.46 0.32
1, 2 FB (1) 0.20 0.31 98.58 37.27 93.98 0.22 1.21 0.30

MF C rule 0.21 1.24 98.43 10.02 87.38 0.25 1.92 0.46
Data 2 B rule 0.21 1.24 88.55 37.14 82.13 0.32 1.54 0.47

185 EB 0.53 0.57 90.33 20.78 81.64 0.31 1.85 0.50
50 FB (D1 & D2) 0.60 0.50 99.94 0.32 87.49 0.24 2.19 0.48
1, 4 FB (1) 0.58 0.51 100.00 0.02 87.50 0.24 2.19 0.48

WB C rule 0.07 1.06 98.70 8.82 87.47 0.19 1.64 0.37
Data 1 B rule 0.07 1.06 87.85 35.30 81.28 0.27 1.37 0.41

50 EB 0.44 0.51 94.40 15.74 84.57 0.22 1.60 0.39
240 FB (D1) 0.47 0.46 99.86 6.34 88.17 0.18 1.62 0.36
1, 4 FB (1) 0.47 0.46 99.96 1.28 87.63 0.18 1.75 0.38

WB C rule 0.04 0.37 99.89 20.38 89.95 0.18 1.30 0.32
Data 1 B rule 0.04 0.37 93.04 66.12 89.68 0.22 1.09 0.33

300 EB 0.20 0.31 98.79 36.80 91.04 0.19 1.21 0.31
1441 FB (D1) 0.21 0.31 99.48 36.30 91.58 0.18 1.17 0.31
1, 4 FB (1) 0.20 0.31 99.27 35.74 91.33 0.18 1.19 0.31

WB C rule 0.11 1.06 98.85 6.73 89.64 0.18 1.39 0.30
Data 2 B rule 0.11 1.06 87.77 29.23 81.92 0.26 1.29 0.37

50 EB 0.42 0.47 95.14 11.88 86.82 0.21 1.37 0.33
328 FB (D1) 0.38 0.40 99.85 3.65 90.23 0.17 1.41 0.30
0, 4 FB (1) 0.42 0.43 99.91 0.93 90.01 0.17 1.42 0.30

Note. The Simul. cond. column gives the type of DIF analysis done (i.e., MF for male-female or
WB for White-Black), data set (1 or 2), number of examinees in the focal and reference groups,
number of true C DIF items, and number of true B DIF items according to the ETS DIF rule.
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Table A2
The Outcome for Male-Female and White-Black DIF When DIF Estimates From an

Earlier Time-Point Are Used to Predict DIF at a Later Time-Point for PPSTR

Simul. Method Root Av. Av. % Av. % Av.% Av. Av Av.
cond. av. sq. RMSE corr. corr. corr. loss loss loss

bias keep flag all keep flag all

MF C rule 0.34 1.17 98.43 9.80 91.78 0.24 1.68 0.35
Data 1 B rule 0.34 1.17 87.77 37.13 83.97 0.32 1.37 0.40

187 EB 0.48 0.47 99.65 0.27 92.20 0.24 1.82 0.35
50 FB (D1 & D2) 0.50 0.46 99.93 0.00 92.44 0.23 1.82 0.35
1,2 FB (1) 0.48 0.46 99.99 0.27 92.51 0.23 1.82 0.35

MF C rule 0.41 1.23 98.64 7.80 85.02 0.23 1.90 0.48
Data 2 0.41 1.23 88.19 25.62 78.80 0.31 1.60 0.50

182 EB 0.61 0.53 99.64 0.00 84.69 0.23 2.12 0.51
50 FB (D1 & D2) 0.64 0.52 99.93 0.00 84.94 0.23 2.12 0.51
1,5 FB (1) 0.61 0.53 100.00 0.00 85.00 0.23 2.12 0.51

WB C rule 0.34 1.04 98.52 18.45 94.52 0.22 1.70 0.29
Data 1 B rule 0.34 1.04 86.90 50.75 85.09 0.30 1.33 0.35

50 EB 0.41 0.43 99.77 3.50 94.96 0.21 1.92 0.29
247 FB (D1 & D2) 0.41 0.43 99.84 19.95 95.85 0.21 1.64 0.28
1,1 FB (1) 0.41 0.42 99.96 3.50 95.14 0.21 1.92 0.29

WB C rule 0.56 1.06 99.12 1.97 91.83 0.20 1.66 0.31
Data 2 B rule 0.56 1.06 87.92 15.50 82.49 0.29 1.57 0.38

50 EB 0.48 0.48 99.85 0.23 92.38 0.20 1.68 0.31
378 FB (D1 & D2) 0.45 0.44 99.71 1.83 92.37 0.20 1.66 0.31
1,2 FB (1) 0.49 0.48 99.90 0.23 92.43 0.20 1.68 0.31

Note. The Simul. cond. column gives the type of DIF analysis done (i.e., MF for male-female or
WB for White-Black), data set (1 or 2), number of examinees in the focal and reference groups,
number of true C DIF items, and number of true B DIF items according to the ETS DIF rule.

34



Analyses of PPSTW Data

Analysis of Past Data

For the PPST writing (PPSTW) assessment, test developers classify each item into 1 of 4 D1

classifications. Each item is also classified into 1 of 17 D2 classifications.

Figures A3 and A4, respectively, show the distribution of the male-female and White-Black

MH D-DIF statistics for 442 items from 10 previous forms of the PPSTW assessment according to

the different classifications. For male-female DIF, none of the 442 items have C DIF and 9 have B

DIF. For White-Black DIF, 8 of the items have C DIF and 25 have B DIF.

An ANOVA of the MH D-DIF values shows that for both male-female and White-Black DIF

analyses, the main effects for the two classifications are significant at the 5% level. For male-female

DIF, a backward stepwise algorithm results in a model with main effect of the D1 classification

only; for White-Black DIF, a backward stepwise algorithm results in a model with main effect of

the D2 classification only.

Results From DIF Analysis

Both recent administrations have items with all combinations of D1 classifications and D2

classifications except for {4, 5}. Table A3 summarizes the performance of the different statistics

for male-female and White-Black DIF. There are very few items with B or C DIF categories.

Both recent administrations have items with all combinations of D1 and D2 classifications

except for {4, 5}. Table A3 summarizes the performance of the different statistics for male-female

and White-Black DIF. There are very few items with B or C DIF categories.
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Figure A3. Box plots for the MH D-DIF statistics for PPSTW for male-female DIF.

Note. The dotted line corresponds to an MH D-DIF value of 0.
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Figure A4. Box plots for the MH D-DIF statistics for PPSTW for White-Black DIF.

Note. The dotted line corresponds to an MH D-DIF value of 0.
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Table A3
The Outcome for Male-Female and White-Black DIF for PPSTR

Simul. Method Root Av. Av. % Av. % Av.% Av. Av Av.
cond. av. sq. RMSE corr. corr. corr. loss loss loss

bias keep flag all keep flag all

MF C rule 0.04 0.97 98.91 - 98.91 0.14 - 0.14
Data 1 B rule 0.04 0.97 87.99 - 87.99 0.23 - 0.23

165 EB 0.31 0.31 99.96 - 99.96 0.14 - 0.14
50 FB (D1) 0.30 0.30 100.00 - 100.00 0.14 - 0.14
0, 0 FB (1) 0.31 0.31 100.00 - 100.00 0.14 - 0.14

MF C rule 0.01 0.35 99.84 - 99.84 0.14 - 0.14
Data 1 B rule 0.01 0.35 95.02 - 95.02 0.16 - 0.16

992 EB 0.16 0.25 99.89 - 99.89 0.14 - 0.14
300 FB (D1) 0.16 0.24 99.89 - 99.89 0.14 - 0.14
0, 0 FB (1) 0.16 0.25 99.89 - 99.89 0.14 - 0.14

MF C rule 0.06 1.03 98.91 5.65 94.00 0.15 1.35 0.21
Data 2 B rule 0.06 1.03 88.65 27.50 85.43 0.23 1.27 0.29

167 EB 0.39 0.35 99.91 0.00 94.65 0.14 1.37 0.21
50 FB (D1) 0.39 0.35 100.00 0.00 94.74 0.14 1.37 0.21
0, 2 FB (1) 0.39 0.35 100.00 0.00 94.74 0.14 1.37 0.21

WB C rule 0.06 0.88 98.66 5.80 96.22 0.26 1.09 0.28
Data 1 B rule 0.06 0.88 85.05 34.20 83.71 0.35 1.06 0.37

50 EB 0.37 0.42 99.74 0.30 97.12 0.25 1.09 0.27
298 FB (D2) 0.37 0.41 98.91 21.20 96.86 0.26 1.07 0.28
0, 1 FB (1) 0.37 0.42 99.84 0.30 97.22 0.25 1.09 0.27

WB C rule 0.03 0.31 99.83 4.80 97.33 0.25 1.09 0.27
Data 1 B rule 0.03 0.31 92.23 52.20 91.18 0.29 1.05 0.31

300 EB 0.15 0.27 98.62 19.00 96.53 0.26 1.08 0.28
1792 FB (D2) 0.15 0.26 98.70 38.20 97.11 0.26 1.06 0.28
0, 1 FB (1) 0.15 0.27 98.60 19.00 96.50 0.26 1.08 0.28

WB C rule 0.08 0.96 98.70 5.87 84.04 0.26 1.40 0.44
Data 2 B rule 0.08 0.96 85.70 28.10 76.60 0.35 1.29 0.49

50 EB 0.51 0.50 99.66 0.68 84.03 0.25 1.44 0.44
277 FB (D2) 0.49 0.48 98.80 9.23 84.66 0.26 1.34 0.43
0, 6 FB (1) 0.51 0.50 99.90 0.68 84.24 0.25 1.44 0.44

Note. The Simul. cond. column gives the type of DIF analysis done (i.e., MF for male-female or
WB for White-Black), data set (1 or 2), number of examinees in the focal and reference groups,
number of true C DIF items, and number of true B DIF items according to the ETS DIF rule.
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